• cysteine modified Angiopep-2 peptide (TFA removed)

cysteine modified Angiopep-2 peptide (TFA removed)

Not For Human Use, Lab Use Only.

Cat.#: 318876

Size:

Special Price 168.1 USD

Availability: In Stock
- +

Add to cart to get an online quotation

Product Information

  • Product Name
    cysteine modified Angiopep-2 peptide (TFA removed)
  • Documents
  • Sequence Shortening
    H-TFFYGGSRGKRNNFKTEEYC-OH
  • Sequence
    H-Thr-Phe-Phe-Tyr-Gly-Gly-Ser-Arg-Gly-Lys-Arg-Asn-Asn-Phe-Lys-Thr-Glu-Glu-Tyr-Cys-OH
  • Length (aa)
    20
  • Peptide Purity (HPLC)
    98.21%
  • Molecular Formula
    C107H154N30O32S
  • Molecular Weight
    2404.6
  • Source
    Synthetic
  • Form
    Powder
  • Description
    Surgical resection is a mainstay of brain tumor treatments. However, the completed excision of malignant brain tumor is challenged by its infiltrative nature. Contrast enhanced magnetic resonance imaging is widely used for defining brain tumor in clinic. However its ability in tumor visualization is hindered by the transient circulation lifetime, nontargeting specificity, and poor blood brain barrier (BBB) permeability of the commercially available MR contrast agents. In this work, we developed a two-order targeted nanoprobe in which MR/optical imaging reporters, tumor vasculature targeted cyclic [RGDyK] peptides, and BBB-permeable Angiopep-2 peptides are labeled on the PAMAM-G5 dendrimer. This nanoprobe is supposed to first target the αVβ3 integrin on tumor vasculatures. Increased local concentration of nanoprobe facilitates the association between BBB-permeable peptides and the low-density lipoprotein receptor-related protein (LRP) receptors on the vascular endothelial cells, which further accelerates BBB transverse of the nanoprobe via LRP receptor-mediated endocytosis. The nanoprobes that have penetrated the BBB secondly target the brain tumor because both αVβ3 integrin and LRP receptor are highly expressed on the tumor cells. In vivo imaging studies demonstrated that this nanoprobe not only efficiently crossed intact BBB in normal mice, but also precisely delineated the boundary of the orthotropic U87MG human glioblastoma xenograft with high target to background signal ratio. Overall, this two-order targeted nanoprobe holds the promise to noninvasively visualize brain tumors with uncompromised BBB and provides the possibility for real-time optical-image-guided brain tumor resection during surgery.
  • Storage Guidelines
    Normally, this peptide will be delivered in lyophilized form and should be stored in a freezer at or below -20 °C. For more details, please refer to the manual:Handling and Storage of Synthetic Peptides
  • References
    • Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano. 2012 Jan 24;6(1):410-20. doi: 10.1021/nn203749v. Epub 2011 Dec 22. PMID: 22148835.
  • About TFA salt

    Trifluoroacetic acid (TFA) has a significant impact on peptides due to its role in the peptide synthesis process.

    TFA is essential for the protonation of peptides that lack basic amino acids such as Arginine (Arg), Histidine (His), and Lysine (Lys), or ones that have blocked N-termini. As a result, peptides often contain TFA salts in the final product.

    TFA residues, when present in custom peptides, can cause unpredictable fluctuations in experimental data. At a nanomolar (nM) level, TFA can influence cell experiments, hindering cell growth at low concentrations (as low as 10 nM) and promoting it at higher doses (0.5–7.0 mM). It can also serve as an allosteric regulator on the GlyR of glycine receptors, thereby increasing receptor activity at lower glycine concentrations.

    In an in vivo setting, TFA can trifluoroacetylate amino groups in proteins and phospholipids, inducing potentially unwanted antibody responses. Moreover, TFA can impact structure studies as it affects spectrum absorption.

  • Molar Concentration Calculator

  • Dilution Calculator

  • Percent Concentration Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight

Peptide Services: NovoPro's peptide synthesis services include standard chemical peptide synthesis, peptide modification, peptide libraries, and recombinant peptide expression.

Standard Peptide Synthesis: NovoPro offers quality peptides at the most competitive prices in the industry, starting at $3.20 per amino acid. NovoPro provides PepBox – Automatic Quote Tool for online price calculation.

Peptide Modifications: NovoPro offers a wide range of peptide modification services including isotope labeling (2H, 15N, and 13C), multiple disulfide bonds, multiple phosphorylations, KLH, BSA, ovalbumin, amidation, acetylation, biotin, FITC, etc.

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"